377 research outputs found

    Numerical study of the derivative of the Riemann zeta function at zeros

    Get PDF
    The derivative of the Riemann zeta function was computed numerically on several large sets of zeros at large heights. Comparisons to known and conjectured asymptotics are presented.Comment: 13 pages, 5 figures; minor typos fixe

    The zeta function on the critical line: Numerical evidence for moments and random matrix theory models

    Full text link
    Results of extensive computations of moments of the Riemann zeta function on the critical line are presented. Calculated values are compared with predictions motivated by random matrix theory. The results can help in deciding between those and competing predictions. It is shown that for high moments and at large heights, the variability of moment values over adjacent intervals is substantial, even when those intervals are long, as long as a block containing 10^9 zeros near zero number 10^23. More than anything else, the variability illustrates the limits of what one can learn about the zeta function from numerical evidence. It is shown the rate of decline of extreme values of the moments is modelled relatively well by power laws. Also, some long range correlations in the values of the second moment, as well as asymptotic oscillations in the values of the shifted fourth moment, are found. The computations described here relied on several representations of the zeta function. The numerical comparison of their effectiveness that is presented is of independent interest, for future large scale computations.Comment: 31 pages, 10 figures, 19 table

    Exact asymptotics of monomer-dimer model on rectangular semi-infinite lattices

    Full text link
    By using the asymptotic theory of Pemantle and Wilson, exact asymptotic expansions of the free energy of the monomer-dimer model on rectangular n×n \times \infty lattices in terms of dimer density are obtained for small values of nn, at both high and low dimer density limits. In the high dimer density limit, the theoretical results confirm the dependence of the free energy on the parity of nn, a result obtained previously by computational methods. In the low dimer density limit, the free energy on a cylinder n×n \times \infty lattice strip has exactly the same first nn terms in the series expansion as that of infinite ×\infty \times \infty lattice.Comment: 9 pages, 6 table

    On the existence of optimum cyclic burst-correcting codes

    Get PDF
    It is shown that for each integer b >= 1 infinitely many optimum cyclic b-burst-correcting codes exist, i.e., codes whose length n, redundancy r, and burst-correcting capability b, satisfy n = 2^{r-b+1} - 1. Some optimum codes for b = 3, 4, and 5 are also studied in detail

    The Asymptotic Number of Irreducible Partitions

    Get PDF
    A partition of [1, n] = {1,..., n} is called irreducible if no proper subinterval of [1, n] is a union of blocks. We determine the asymptotic relationship between the numbers of irreducible partitions, partitions without singleton blocks, and all partitions when the block sizes must lie in some specified set

    Bounds for binary codes of length less than 25

    Full text link

    Scale invariant correlations and the distribution of prime numbers

    Full text link
    Negative correlations in the distribution of prime numbers are found to display a scale invariance. This occurs in conjunction with a nonstationary behavior. We compare the prime number series to a type of fractional Brownian motion which incorporates both the scale invariance and the nonstationary behavior. Interesting discrepancies remain. The scale invariance also appears to imply the Riemann hypothesis and we study the use of the former as a test of the latter.Comment: 13 pages, 8 figures, version to appear in J. Phys.

    An Optimal Acceptance Policy for an Urn Scheme

    Get PDF
    An urn contains m balls of value -1 and p balls of value +1. At each turn a ball is drawn randomly, without replacement, and the player decides before the draw whether or not to accept the ball, i.e., the bet where the payoff is the value of the ball. The process continues until all m+p balls are drawn. Let V(m,p) denote the value of this acceptance (m,p) urn problem under an optimal acceptance policy. In this paper, we first derive an exact closed form for V(m,p) and then study its properties and asymptotic behavior. We also compare this acceptance (m,p) urn problem with the original (m,p) urn problem which was introduced by Shepp [Ann. Math. Statist., 40 (1969), pp. 993--1010]. Finally, we briefly discuss some applications of this acceptance (m,p) urn problem and introduce a Bayesian approach to this optimal stopping problem. Some numerical illustrations are also provided
    corecore